Differentiation Formulas of Calculus

\frac{d}{dx} (c)= 0                             [where, c is single constant]

\frac{d}{dx} (cu)= c \frac {d}{dx} (u)

\frac{d}{dx} (xn)= nxn-1

\frac{d}{dx} (\sqrt {x})= \frac {1}{2\sqrt{x}}

\frac{d}{dx} (log x)= \frac {1}{x}

\frac{d}{dx} (loga x)= \frac {1}{x} logae

\frac{d}{dx} (ex)= ex

\frac{d}{dx} (Sin x)= cos x

\frac{d}{dx} (cos x)= – sin x

\frac{d}{dx} (tan x)= sec2 x

\frac{d}{dx} (cot x)= -cosec2 x

\frac{d}{dx} (sec x)= sec x. tan x

\frac{d}{dx} (cosec x)= -cosec x. cot x

\frac{d}{dx} (sin-1) = 1  \over { \sqrt{1-x^2 }}

\frac{d}{dx} (cos-1)= -1  \over { \sqrt{1-x^2 }}

\frac{d}{dx} (tan-1)= \frac{1}{1+x^2}

\frac{d}{dx} (uv)= u \frac {d}{dx} (v) + v \frac {d}{dx} (u)

\frac{d}{dx} (uvw)= vw \frac {d}{dx} (u) + uw \frac {d}{dx} (v) + uv \frac {d}{dx} ( w )

 \frac {d}{dx} (\frac {u}{v}) = \frac{v\frac{\mathrm{d}}{\mathrm{d} x} ( u )-u\frac{\mathrm{d} }{\mathrm{d} x} ( v )}{v^{2}}

✪➤ Download PDF

Rate this post

By Mithu Khan

I am a blogger and educator with a passion for sharing knowledge and insights with others. I am currently studying for my honors degree in mathematics at Govt. Edward College, Pabna.